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Plan of the talk

1. Experimental searches for graviton mode;
2. Microscopic theory with Hamiltonians at different filling

factors;
3. The hierarchical relationship between the microscopic

Hamiltonians;

4. The twisted K-group for calculation of Hilbert space states of
charged particles;

5. Conclusions.




Experimental searches for graviton mode

Gravity is one of the fundamental interactions in nature, along with
electromagnetic, strong and weak interactions. A full-fledged theory of
qguantum gravity has remained elusive for many decades, but if gravity is
quantum in nature, there should be a weak excitation of the
gravitational field, the graviton. Scientists have presented the first
experimental data confirming the existence of a chiral graviton mode,
which should help us to understand how gravity works. The authors of
the study from the US, Germany and China found these particles in a

special type of liquid that behaves in a special way under a magnetic
field.




Microscopic theory with Hamiltonians at
different filling factors

In the condensed state of matter, excitations can arise that obey the same
equations as the quanta of some fundamental fields.

These are, as a rule, very special conditions that require the presence of low
temperatures, a magnetic field, and in some cases also the limitation of two
dimensions (in thin films or, under certain conditions, on the surface of the
sample).

Two-dimensional “universe"” connected with the quantum Hall effect, is
characterized by Fermi velocity of the chiral Luttinger liquid of the edge transport
and by magnetic length. modes, called graviton modes (GM), arise in the
quantum fluid of electrons under the influence of a strong magnetic field at low
temperatures.

This effect is called the fractional quantum Hall effect (FQHE) in a two-
dimensional fluid. To study gravitational modes, inelastic scattering of photons is
considered, modeled using microscopic theory with Hamiltonians at different
filling factors.




Hamiltonians at different filling factors

We’ll use the following Hamiltonian
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where ;[ia = phia + eAhia — the dynamical momentum operator of the i-th electron, Ai 1s the external

vector potential, connected with magnetic field by formula B = e’ A . V__ describes the
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dynamics only within a single LL, the magnetic length 1s IR = +/1/eB. The Hilbert space of a single
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LL, referred to as the lowest LL (LLL), 1s parametrized by the metric g , which leads to density

modes in higher LLs, known as “cyclotron gravitons".




The dynamics

The dynamics is determined by the guiding
i all A —i
center coordinates R =1 — € 11 E The interaction energy in (1), th, 15 a functional of R and

expressed as
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with pq=2 e the guiding center density operator and |g| = 4 /g q.q, — the distance in the
E

momentum space. There 1s presented the analogy to the “cyclotron graviton" in the integer

" aZbody
quantum Hall effect through the type of gravitational interaction, Fm: =V . The Hilbert spaces

like LLL are called conformal Hilbert spaces (CHSs) as they are generated by the conformal
operators like the Virasoro algebra, known as the Virasoro constraint in string theory, applied only
on the physical states [4]. So such CHSs are built up with quasiparticles.




Multiple GM

To study multiple GM, it 1s necessary to study the properties of the energy levels of
electron-electron interaction described by the CHS. The CHS of a lowest LL, LLL 1s parametrized

by the unimodular metric Em, quantum fluctuations of which lead to density modes in higher LLs,
“eyclotron gravitons". The energy of GM i1s very high, with a large magnetic field. These GM are
connected with higher energy levels within mteger quantum Hall effect (IQHE), since the LLL i1s
fully filled. For FQHE 1n a partially filled LL, the dynamics 15 determuned by the guiding center

—(] A
coordinates R , which determine the interaction energy Fmt. Such Hilbert spaces are spanned by

zero energy many-body states of special local Hamiltonians, including the pseudopotentials. Fig. |
illustrates a hierarchical structure of CHS mn the LLL.
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Fig. 1. The hierarchical structure of the CHSs in the LLL.




So, the subspaces of the LLL have a hierarchical structure Hy . - H, . The rest of the cyclotron GMs
are examples to understand the emergence of multiple GMs from Vi, in accordance with the
hierarchical structure. To understand that the number of GMs 1s a dynamic property, we’ll consider
the model Hamiltonian for the GMs

AV, (2)
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The melastic scattering with the circularly polanzed hight, as was shown n [5] for the Jain states
with a filling factors v = 2/7, 2/9, 1/4 and three body components of interaction (2), provides an
example to understand gravitons® dynamics with peaks observed at almost the same frequency for
each polarization in the second LL, SLL. So an introduction of a third component, A to the
microscopic Hamiltonian can lead to the sphtting of the two GMs to three GMs. Moreover, it is
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interesting to stress the hierarchical relationship, qudy cH . Y e Hz v,




The twisted K-group

We can use the apparatus of the twisted K-group for calculation of Hilbert space states of
charged particles for explanation of the FQHE, which are topological phases of LLLs. As for the

FQHE we are dealing with a set of levels with a hilling factor less than one. The lowest LL 1s
—ith
parametrized by the metric g with a hierarchical structure of CHS as presented in Fig. 1. Since we

are dealing with four types of interaction, it 18 appropriate to use the apparatus of vector bundles to
describe a complex formation of D-brane type. B-field interacting with D-branes can be taken into
account through the Dixmier-Douady invariant, which characterizes the bundles and describes the
strength of the Neveu-Schwarz B-field interacting with D-branes. D-branes are topological solitons
whose charges are described by Grothendieck K-groups. One of the most exciting discoveries of
D-brane theory 1s the prediction of the non-commutativity of space-time coordinates [6]. The
description of this non-commutative geometry 15 realized in terms of the twisted K-theory of
C*-algebras. Let us calculate the topological charges of the Dé-brane using twisted K-theory
methods. Consider the following vector bundle over a compact manifold X:




The twisted K-group

F - E,
! [H] & Tors(H3(X, 2))
X

H— the Dixmier-Douady invariant, describing the intensity of the Neve-Schwartz B-
field

characterizing the bundles E,, .

Reduction of twisted K groups to an exact sequence of the form

leads to the result

Ko(S?, n[H])=2,




The twisted K-group

This group value determines the topological charges of the D6-brane in the presence of the Neveu-
Schwarz -field. Since the theory of relativity is defined in four-dimensional space, three coordinates
plus time, the three-dimensional sphere with the punctured point is an approximation of three-
dimensional Euclidean space. The ten-dimensional space in string theory, compactified onto
six-dimensional space, 15 described in terms of a topological invariant of D6-brane, in this case by
the twisted K-group, which takes values in the cyelic group of order n, Eﬂ ={0, 1, .., n— 1}. We

see that with the addition of the next interaction component to formula (2), a new energy level or a
new excited state of the GM 15 added, which indicates a consistent increase in the number of the
energy levels within the FQHE. The nesting of each previous level into the next one is fixed,

H = H2 c Ha c..C an, which 15 well reflected by the value of the twisted K-group. Thus, the

values of the topological charges of the K-group give us imformation about the nature and number
of energy levels that are excitations of the LLL within the FQHE framework.




CONCLUSIONS

®  We have considered the fractional quantum Hall effect associated with graviton modes that arise in
the quantum fluid of electrons under the influence of a strong magnetic field at low temperatures;

® We presented the geometric origin of GM and the hierarchical structure of conformal Hilbert spaces as
null spaces of model Hamiltonians. So, the subspaces of the LLL have a hierarchical structure H, , ,< H,;

® The inelastic scattering with the circularly polarized light, provides an example to understand
gravitons’ dynamics. So an introduction of a third component to the microscopic Hamiltonian can lead
to the splitting of the two GMs to three GMs. So, it is interesting to stress the hierarchical relationship,

H:bdy c Hibd:” C H; by
Using the twisted K-group apparatus 1or caicuiauon or mnoert space states of charged particles we

received

K (S", n[H]) = Z_

which indicates a consistent increase in the number of the energy levels within the FQHE.




THANK YOU
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