

UNDERSTANDING, MODELING AND IMPLEMENTING THE ANALOGUE RESPONSE OF THE SILICON TRACKING SYSTEM OF THE CBM EXPERIMENT AT GSI/FAIR

<u>O. Kshyvanskyi</u>¹, V. Pugatch¹, M. Teklishyn²

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine ² GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

21-22 January 2025, Kyiv, Ukraine

CBM experiment

Compressed Baryonic Matter (CBM) is a next-generation fixed-target experiment to be operated at GSI, FAIR (Facility for Antiproton and Ion Research), Darmstadt, Germany.

Heavy ion collisions:

- Rare probes and higher-order fluctuations,
- Beam-target interaction rate < 10 MHz, •
- > 11 AGeV for Au, > 29 GeV for protons.

Investigation of the QCD phase diagram (observation of the phase transition and finding the critical point):

- Moderate temperatures.
- High baryon densities.

O. Kshyvanskyi

HEP-TEC 2025

200

Silicon Tracking System

Silicon Tracking System (STS) – principal tracker of the CBM experiment:

- High track reconstruction efficiency (95% for $p \ge 1$ GeV/c),
- Precise momentum resolution (1.5% for $p \ge 1$ GeV/c),
- \leq 700 particles per central Au + Au collision,
- Low momenta \rightarrow low material budget (2 8% X₀),
- Continuous beam, free-streaming detector operation,
- 876 double-sided double-metal silicon micro-strip sensors, 8 tracking stations,
- Highly integrated objects: limited intervention after assembly.

Silicon Tracking System installed inside the dipole magnet

Silicon Tracking System

21-22 January 2025

STS module design

Detector module - functional building block of the STS, complex system with interconnected electrical properties. Main components:

Double-sided double-metal silicon sensor

- 1024 strips per side,
- 320 µm thickness,
- p-side tilted by 7.5° to the edge,
- Width 62 mm, lengths 22, 42, 62 and 124 mm.
- Two front-end boards (FEB)
 - 8 custom-designed STS-XYTER (STS, X, Y coordinate, Time and Energy Read out) ASICs,
 - Power lines, voltage stabilizers (1.2 V and 1.8 V).
- Ultra-thin micro-cables
 - Length from 160 mm to 495 mm.

Silicon DSDM sensors

Prototype design of the FEB

Micro-cable

Electronic simulations of the STS module

- STS detector module is a **complex system** with **interconnected electrical properties**,
- STS is **a highly integrated object** with very limited access after assembly and installation.

- STS digitizer improvement,
- Improvement of the module quality control,
- Improvement of the reconstruction efficiency.

Electronic simulations of the STS module Single-channel schematic

To perform simulations **LTSpice** (analog electronic circuit simulator) is used.

- Free software.
- No limitations on the number of components and subcircuits.
- Includes exhaustive library of possible components.
- Allows to create custom components.

Start with a simplified schematic of a **detector with a single channel**, and gradually increase the complexity of the schematic to account for various effects.

Equivalent circuit with key elements:

- HV source.
- Return paths circuit part of the module circuit that stabilizes SMX grounding and suppresses noise from voltage sources (ASIC frequency window 1kHz 10MHz).
- Sensor strip.
- Micro-cable line.
- STSXYTER channel: opamp with RC feedback, fast shaper, slow shaper.

Decimal scan of the values of C_cable1 from 0.1pF to 1μ F.

O. Kshyvanskyi

HEP-TEC 2025

Electronic simulations of the STS module The noise dependence on capacitive load. Signal's waveform

To reproduce the results of the measurement of the noise level and signal waveform as a function of the load capacitance, the next schematic was used:

- V1 HV source.
- C1 load capacitance [1-40] pF.
- CSA.
- Fast shaper with shaping time 30 ns.
- Slow shaper with shaping time 90 ns.

Schematic used for the load capacitance dependence simulation.

Electronic simulations of the STS module The noise dependence on capacitive load. Signal's waveform

Noise level at the output of the slow shaper as a function of the load capacitance: measured data (blue), simulated data (red).

Wavaforms of shapers measured at 8 fC for different shaping times

Wavaforms of shapers simulated at 8 fC for different shaping times

Electronic simulations of the STS module Higher level building blocks

To account for parasitic effects between elements the **multichannel schematic** is needed.

For this purpose and for optimization of multichannel schematic simulation, **custom components were created**:

- Strip,
- Micro-cable,
- SMX channel.

Nominal values are parametrized as function of strip or micro-cable **length**.

Addition capacitors were added to represent parasitic capacitances between strips and micro-cables.

Electronic simulations of the STS module Multi-channel schematic. Example of the 8-channel schematic

Using custom components, an 8 channels schematic was assembled to:

- Study the influence of parasitic effects,
- Study the influence of the disconnected or defective strips.

HEP-TEC 2025

Electronic simulations of the STS module Multi-channel schematic. Disconnected strips

For all simulations:

- only 5th strip was disconnected,
- signal was sequentially injected on the 4th, 5th, and 6th strips,
- Signal amplitude and noise level were measured on the CSA's output of each channel.

These simulations provide us with:

- Understanding of importance of the parasitic effects,
- Approximate number of channels needed to adequately describe such effects without simulating full module.

- Connected strip a single peak.
- Disconnected strip two picks on adjacent channels (each roughly half of the initial peak).

Opportunity to improve efficiency of the event reconstruction in case of broken channels.

• Significant noise level drops for the disconnected strip.

Identification of the broken strips during the assembly.

Electronic simulations of the STS module Multi-channel schematic. Uniform noise level

Standard schematic.

Additional high capacitance, low resistance element ("wide" channel).

Two additional compensational channels (2 additional channels).

O. Kshyvanskyi

Electronic simulations of the STS module Double sided schematic. Parasitic capacitances

Cross-section and parasitic capacitances of double-sided detector.

Diagram of the 16-strip schematics, with indication of the bulk capacitances between the first n-side strip and p-side strips (no to scale). Schematic of the bulk capacitances of a single strip for 16-strip schematic.

O. Kshyvanskyi

HEP-TEC 2025

Conclusion Current state of the simulations, furthers plans

- Cross-talk between strips and micro-cables,
- Noise dependence on the length of the components,
- Bulk capacitance,
- Signal oscillation effect.

Plans for further improvement:

- Noise dependence on the capacitive load,
- Shapers waveforms dependence on the injected charge.

Electronic simulations of the STS module Results

Application of the developed tool

- Improvement of the module quality control,
- Improvement of the reconstruction efficiency,
- Optimization of the detector's working point,
- Optimization of the detector's operational conditions,
- Simulation of the various SMX settings and corresponding detector performance.

Backup slides

Evaluation of the silicon detector modules. Custom micro-cables

2 × 1024 ch./sensor: stack of 32 micro cables per module.

Read-out lines are protected from EMI by aluminium shielding layer.

Schematics of a single cable

Micro-cable production ongoing at LTU, Kharkiv (60% of ~ 15000 cables ready at GSI)

Length from 160mm to 495mm.

٠

٠

HEP-TEC 2025

Evaluation of the silicon detector modules. Module Test Box

Main components:

- Grounded aluminum box.
- One detector module with aluminized polyimide shielding over micro-cable.
- Water cooling system.
- HV and LV interfaces, two data cables from FEBs to CROB.

P-scan (pulse scan) procedure is used to test STS module performance. The charge pulses are generated by inner pulse generator in STS-XYTER.

Electronic simulations of the STS module Signal oscillations

During testing of the return path circuits components' influence, **unexpected oscillations of the output signal** were observed.

Cause – incorrect placement of the R_block components in combination with C_cable being grounded to the same biasing ring.

This gave an insight on a potential cause of oscillations if such ever occur.

Output signal oscillations for C_cable1,2 variations [0.1pF-100pF].