

Decay of Z boson to a pair of τ leptons at the LHC: spin effects and New Physics

A.Yu. Korchin^{1,2,3}, E. Richter-Was³ and Z. Was⁴

¹*NSC Kharkiv Institute of Physics and Technology, 61108 Kharkiv, Ukraine*

²*V.N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine*

³*M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Krakow, Poland*

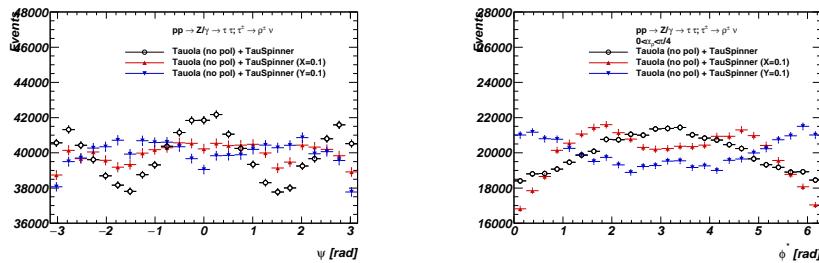
⁴*Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland*

The possible anomalous New Physics contributions to dipole and weak dipole moments of the τ lepton bring renewed interest in development and revisiting charge-parity (CP) violating signatures in the τ -pair production in Z -boson decay at energies of the LHC. Such process has been studied in the pp collisions at the LHC experiments in wide range of invariant masses of outgoing τ -lepton pair.

We study observables sensitive to New Physics effects in hadron colliders. Our approach, developed in [1-4], includes:

- electroweak radiative corrections in the Standard Model taken into account in the Improved Born Approximation [5];
- arbitrary phase-shift between vector and axial-vector couplings of Z -boson to the τ leptons;
- electromagnetic and weak anomalous magnetic and electric dipole moments of the τ lepton;
- implementation of theoretical formalism in the Monte Carlo program **TauSpinner**.

The amplitude of the process $q + \bar{q} \rightarrow \tau^- + \tau^+$ (where $q = u, d, s$) is calculated for polarized τ leptons, which decay into various channels. The cross section can be written as


$$\frac{d\sigma}{d\Omega}(q \bar{q} \rightarrow \tau^- \tau^+) = \frac{\beta}{64\pi^2 s} \sum_{i,j=1}^4 (R_{ij}^{(\gamma)} + R_{ij}^{(Z)} + R_{ij}^{(Z\gamma)}) S_i^- S_j^+,$$

where $S_i^- = (\vec{S}^-, 1)$, $S_j^+ = (\vec{S}^+, 1)$, and \vec{S}^- , \vec{S}^+ are polarization 3-vectors of τ^- , τ^+ leptons in their corresponding rest frames. The spin-correlation matrices R_{ij} carry information on mechanism of the reaction and effects of New Physics.

We include s -channel exchange of the photon γ , Z boson and their interference $Z\gamma$. The $\gamma\tau\tau$ electromagnetic vertex includes anomalous magnetic $A(s)$ and CP -violating electric $B(s)$ dipole form-factors, while $Z\tau\tau$ vertex includes weak anomalous magnetic $X(s)$ and CP -violating electric $Y(s)$ form-factors. In framework of the Improved Born Approximation the weak vector coupling of Z to τ leptons becomes complex and (s, t) dependent. On top of that we include an arbitrary phase-shift between vector and axial-vector couplings, which may reflect effect of unknown physics beyond the Standard Model.

As an example of observables, sensitive to New Physics, we show distribution of the so-called acoplanarity angles ψ and ϕ^* which can be defined for decay of τ^- , τ^+ leptons (see details in [4]):

$$\tau^- \rightarrow \rho^- + \nu_\tau \rightarrow \pi^- + \pi^0 + \nu_\tau, \quad \tau^+ \rightarrow \rho^+ + \bar{\nu}_\tau \rightarrow \pi^- + \pi^0 + \bar{\nu}_\tau$$

Acoplanarity angle distributions for nonzero weak dipole moments in pp collisions at $\sqrt{s} = 13$ TeV.

1. Sw. Banerjee, A.Yu. Korchin, Z. Was. Phys. Rev. D 106 (2022) 11, 113010.
2. Sw. Banerjee, A.Yu. Korchin, E. Richter-Was, Z. Was. Phys. Rev. D 109 (2024) 1, 013002.
3. A.Yu. Korchin, E. Richter-Was, Z. Was. Acta Phys. Polon. B 56 (2025) no. 10, 10-A4.
4. A.Yu. Korchin, E. Richter-Was, Z. Was. e-Print: 2512.22971 [hep-ph]
5. D.Yu. Bardin et al. Comput. Phys. Commun. 133 (2001) 229395.