

**BGOOD PHOTOPRODUCTION EXPERIMENT: RECENT RESULTS ON  
UNCONVENTIONAL BARYON STRUCTURE STUDY IN THE LIGHT QUARK SECTOR**  
**M. Romaniuk<sup>1,2</sup>**  
(for BGOOD collaboration)

<sup>1</sup>*Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine*

<sup>2</sup>*INFN Roma "Tor Vergata", Rome, Italy*

Unconventional baryonic and mesonic states represent a topical issue in contemporary hadron physics. New results from the charm-quark sector indicate the existence of multi-quark objects beyond the quark-antiquark and 3-quark configurations (mesons and baryons). The investigations were mostly focused on the sector of  $c$  and  $b$  quarks, but in order to understand whether the newly discovered structures represent a general feature of structure formation from the basic building blocks of matter, quarks and gluons, also the light uds-quark sector is now attracting increasing attention. This is the focus of the BGOOD experiment [1] at the ELSA electron accelerator. The photoproduction experiment accesses forward meson angles and low momentum exchange kinematics in the uds sector, which may be sensitive to molecular-like hadron structure.

The differential cross section for  $\gamma p \rightarrow K^+ \Lambda(1520)$  was measured for  $\cos\theta_{CM}^K > 0.9$  from threshold to a centre-of-mass energy of 2090 MeV at the BGOOD experiment [2]. The resolution in both  $W$  and  $\cos\theta_{CM}^K$  enable a precise characterization in this kinematic regime for the first time. The data are consistent with the previous data of LEPS [3] and effective Lagrangian models [4-5]. The improved statistical precision will help constrain parameters in future phenomenological models, which can lead to an improved understanding of t-channel  $K^*$ , u-channel  $\Lambda$  and s-channel  $N^*$  contributions to the reaction mechanism.

In the strangeness sector, where meson–baryon dynamics may play prominent roles, forward angle differential cross section measurements from threshold for  $K^+ \Lambda$ ,  $K^+ \Sigma^0$ ,  $K^+ \Sigma(1385)$ ,  $K^+ \Lambda(1405)$  and  $K^+ \Lambda(1520)$  indicate an equivalence to the  $P_C$  states observed at the  $D\Sigma_C$ ,  $D\Sigma_C^*$  and  $D^* \Sigma_C$  thresholds [6].

1. S. Alef, et al. (BGOOD Collaboration), Eur. Phys. J. A 57 80 (2021)
2. E.O. Rosanowski, et.al. (BGOOD Collaboration), Eur. Phys. J. A 61 (2025) 147
3. H. Kohri et al. (LEPS Collaboration) Phys. Rev. Lett. 104, 172001 (2010)
4. J. He and X.-R. Chen. Phys. Rev. C, 86(035204), 2012
5. S.-I. Nam, A. Hosaka, H.-C. Kim, Phys. Rev. D 71, 114012 (2005)
6. T.Jude, PPNP 147 (2026) 104224.